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A finite-difference solution method is described for a 30 VISCOUS flow with free-surface 
waves about an advancing ship m steady course. A Navier-Stokes equation of finite-difference 
form is solved by a time-marching scheme in a boundary-fitted curvilinear coordinate system 
which is deformed to fit the moving free-surface at each time step. A sub-grid-scale turbulence 
model is introduced to achieve computations at higher Reynolds numbers. It is demonstrated 
that the computations by this method simulate fairly well free-surface waves, viscous flows 
and their interactions including three-dimensional separation under the influence of the free- 
surface. :( 1987 Academic Press, lnc 
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I. INTRODUCTION 

As is well known, a ship advancing on a steady course generates a viscous 
field as well as a wave field, and these flow fields render viscous and wave resistance 
forces on it, respectively. Although these two flow fields and two resultant resistance 
components have intimate mutual interactions, they have long been separately 
studied both experimentally and theoretically. 

Laboratory experiments with ship models are used to perform in accordance with 
Froude’s law of similarity. In the usual resistance tests the wave resistance is derived 
by empirically extracting the viscous resistance from the total resistance of a model 
ship at a relatively lower Reynolds number than a full-scale ship. This procedure of 
experiment, which has been commonly applied for more than a hundred years, con- 
tains fundamental uncertainty. Furthermore, the nonlinear properties of ship waves 
which have been elucidated in the last decade [l] and the interactions of a viscous 
flow with waves, especially at the stern [2, 31, make the fluid motion much more 
complicated. 
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Theoretical investigations on the viscous flow about a ship have long been based 
on the boundary layer theory which cannot explain the viscous flow after 
separation. Recently partially parabolic equations are used for the numerical 
calculations of the viscous flow on and after a ship, e.g., Chen and Pate1 [4]. A new 
attempt to solve the Navier-Stokes (NS) equation is made by Kodama [S]. 
However, the simplification of the governing equations may give limitations to the 
fluid motions in the former and similar methods, and the degree of accuracy of the 
latter method does not seem to be sufficient. Furthermore, the presence of the free- 
surface is not considered and the availability of the turbulence model is not well 
examined in either method. 

A finite-difference method based on the NS-equation is used for the simulation of 
ship waves by Miyata et al. [6,7]. Although the agreement in wave geometry is 
satisfactory, the viscous flow is not solved due to the use of a rectangular inflexible 
mesh system and an insufficient degree of accuracy of the difference scheme. 

To achieve numerical simulation of the complicated viscous flow at the stern with 
wave motion, postulations or approximations must be reduced to the minimum, 
since they may contaminate the solution. A finite-difference method based on the 
NS-equation with a proper turbulence model seems to be most suitable for this 
kind of problem. A two-equation model, the so-called K-E model, is often used 
recently. However, it seems very arbitrary with respect to the initial condition and 
too many empirical constants. Furthermore, this model is not considered capable of 
simulating a separated flow. Another model called sub-grid-scale model which is 
used in large-eddy simulations seems to have more versatile properties, having sim- 
ple equations and the least number of empirical constants. More realistic simulation 
of a viscous flow about a body of arbitrary configuration is expected with this 
model if a sufficiently line cell system is available. It appears safe to say that 
developing a computational method of the large-eddy simulation type for a flow 
about an arbitrary body provides the first important step for completion of a com- 
putational experimental tank. Second, the shortage of sufficient computer storage 
now available wiI1 be resolved in the near future. 

For the solution of the viscous flow about a ship, a boundary-litted curvilinear 
coordinate system must be employed and a higher degree of accuracy is necessary. 
To explain wave motion, particular techniques are necessary so that the nonlinear 
free-surface conditions are implemented on the moving boundary. In this paper the 
boundary-fitted curvilinear coordinate system is generated by solving an elliptic 
partial differential system at every time step of the time-marching. The NS-equation 
in rotational form, which conserves both momentum and kinetic energy, is used 
and a sub-grid-scale turbulence model is incorporated. The computer code is 
written in a form suitable for a supercomputer, namely for a vector processor. In 
Section 2 the generation of a boundary&ted coordinate system is briefly described. 
The governing equations in a moving coordinate system and the turbulence model 
are described in Sections 3 and 4. The computational procedure and the linite- 
difference scheme are explained in Section 5. The method to implement the 
nonlinear free-surface condition by moving the grid system and other boundary 
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conditions, which are also very important, are described in Section 6. Some 
computed results on a variety of conditions, with and without waves, at three 
Reynolds numbers and at three Froude numbers, are presented and discusse 
Section 7. Brief concluding remarks are mentioned in Section 8. 

2. BOUNDARY-FITTED COORDINATE SYSTEM 

The method proposed by Thompson et al. [ 10-121 is used for the generation of a 
boundary-fitted curvilinear coordinate system. The physical region G in x1 x2 x3- 
space bounded by arbitrary-shaped boundaries aG is transformed to the rec- 
tangular region H in t1 c’ c3-space as seen in Fig. 1. Since the configuration of a 
ship is symmetrical and the flow is also assumed to be approximately symmetrical, 
only one side of a ship is considered. 

The coordinates in the physical region are expressed as a function of the coor- 
dinates in the transformed region as 

x1 = xyp, 51, C3). (1) 

To determine the smooth function for Eq. (l), the following elliptic partial differen- 
tial equation is solved by a successive relaxation method: 

apt ,jG5 

Transformation 

1 aHI aw5 

I 
aH2 

FIG. 1. Transformation of the computational domain. 
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TABLE I 

Boundary Conditions for Grid GeneratIon 

Boundaries 
Dirichlet 
condition 

Neumann 
condition 

i3H, Free-surface 
aH, Bottom 
aH, Inflow 
aH, Outflow 

I?H, Side 
aH, Ship surface 
i?H, Centerplane 

X’ x2 X3 

x3 x’ x2 
x’ x2 x3 
X1 x2 x3 

X2 X’ X3 
2 

;2 
X’ X3 

X1 X3 

where 
-- 

$‘=A’sgn(F-t’)exp(-B’l<‘-5’1). (3) 

Here A and B are attraction and decay factors, respectively, and <’ = F denotes the 
specified coordinate surface to which coordinate surfaces of 5’ = const are attracted. 
The values of A and B are described in the subsequent section. On the seven boun- 
daries, the Dirichlet or Neumann condition, the latter of which means that the 
derivatives approximately normal to the boundary are set at zero, is imposed as 
listed in Table I. An example of a generated grid system is shown in Fig. 2. 

Krll 

FIG. 2. Initial grid system. 
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The metric tensors are defined by 

axk axi 
&,=-@-$-$k” 

g = Wg,L 14b) 
g” = tg- ~~zmn~J~qgmpgnq, (4c) 

where 6 and e denote the Kronecker delta and the Eddington permutation symbol, 
respectively. The metric tensor is used hereafter to describe the computational 
method, since we solve directly three curvilinear components of the velocity vector 
and a pressure scalar in the curvilinear coordinate system, in which both dependent 
and independent variables are curvilinear. Thus the present method differs from the 
previous work by Shanks and Thompson [12]. 

3. GOVERNING EQUATIONS 

3.1. Navier-Stokes Equation in Rotational Form 

The following NS-equation and the equation of continuity are the governing 
equations: 

au 
dt = -grad(P + $I . u + g,x3) + u x rot(u) - v . rot(rot(u)), 

div(u) = 0. 

Here, u is the velocity vector, t is the time, P is the pressure divided by the density, 
v is the kinematic viscosity, and g, is the gravitational acceleration. This rotational 
form of the NS-equation has the advantage of having the conservative property for 
both momentum and kinetic energy. Furthermore, this formulation makes t 
representation in general curvilinear coordinates very simple without involving 
Ghristoffel symbols that may arise from the covariant differentiation of a vector or 
a higher-order tensor Denoting the general curvilinear coordinates by l’ and, using 
the metric tensor g,, its determinant g, and its conjugated tensor g”, the following 
governing equations in general curvilinear coordinates are derived: 

(P + f&,Ukd+&x3) + gQ&,,,Ukd 

g 
-l/2 

$ (g1’2uL) = 0, 
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where sQk is a third-order tensor and refers to the Eddington permutation symbol e 
as 

& ctk - -g > 
- 1/2e”k 

and w is a contravariant vector of vorticity defined as 

(9) 

(10) 

3.2. Navier-Stokes Equation in a Moving Grid System 

Since the free-surface is deformed due to the wave generation in the time- 
marching solution procedure, the general curvilinear coordinates must move so that 
the uppermost coordinate surface fits this free-surface boundary. Therefore, the 
coordinates <’ is a function of not only the Cartesian coordinates xi but also time t. 
Then the time-derivative term of the NS-equation in time-dependent curvilinear 
coordinates becomes [ 131 

au au 
-= - + (grad u) . v. 
at(xq 8t(tJ) 

Here, v is the velocity vector of the movement of the grid points and is defined as 

Here, gcij is a base vector in the curvilinear coordinate system. By substituting a 
position vector r for u in Eq. (11) another definition of the velocity vector of the 
moving grid points is derived as 

(13) 

Eq. (12) is a representation with reference to the fixed coordinates and Eq. (13) 
with reference to the moving coordinates. Then Eq. (11) is deformed as 

au au -= - + div(uv) - u div v. at(d) at(p) 

Since the divergence of the velocity vector v with reference to the moving coor- 
dinates is given as 

divv=g-“2 -$ w’*v’) 

=- g 
- 1,2 w/2 

at’ (15) 
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the first and third terms of Eq. (14) are written as 

Then, the following M-equation in a moving coordinate 
keeping the rotational form, 

399 

system is obtained, 

g ~ 1,2 i (g%) = - grad(P + +u . q + g,x’) 

+ f{q x rot(u) + u x rot( )-rot(uxq)-udivvj 

-v rot(rot(u)), 117) 

where 
q=u+v (18, 

is the modified velocity. In general curvilinear coordinates Eq. ( 17) is written as 

g - “2 $ ( gl%lLg(,)) = a’g(i), 119al 

a’= -g"- a (P+;g,,ukq'+g,x3) 
a(’ 

1 
+ 2 g”&,,,qkW + g”EJk,Uk 

1 ! 

Ei”ln $x (gmqS3 
1 

- Eqk a~j --% &kmnUmqn)-u'g-'~2 &(g"'vJ) 

- V&Vk ag i 4 (gkd). 

where 

dEEimn w 
-f- kn#). (201 

A scalar form of velocity is derived by the following transformation with a base 
vector in the Cartesian coordinates i, which is convenient in the time-marching 
procedure described in the subsequent section. 

axk 
g(i) = p +k,. (21) 



400 MIYATA, SATO, AND BABA 

4. TURBULENCE MODEL 

4.1. SGS Stresses 

A sub-grid-scale (SGS) turbulence model is employed following Deardorff [S]. 
In partial analogy to the molecular case the SGS stress R” is expressed as 

Here, the primes denote deviations from local grid-volume means and the overbars 
are grid-scale averaging operators, v, is the SGS eddy viscosity coefficient, 5 is 
defined as 

- 
q = ;(ul, -+ ‘J,,)? (23) 

where the subscript with a symbol “;” denotes a covariant derivative with respect 
to the subscript. 

The dimensional arguments demand that 

v, = (Co A)4’3 E1’3, (24) 

where 

A 5 (Ax . Ay . Az)“~ = g’? (25) 

The rate of dissipation of the turbulent kinetic energy within a local grid volume E 
is approximately given by 

E=v,2F$? (26) 

Then the Smagorinsky et al. [9] assumption for v, is derived as 

v, = (C, A)* (2Z3)“‘. (27) 

The empirical coefficient Co is set at 0.1. 
The first term of Eq. (22) is the turbulent kinetic energy K multiplied by f. From 

the dimensional arguments 

then Eqs. (24) and (28) give 

v, = CK2/E, (28) 

(29) 

The coefficient C, is set at 0.094 following Deardorff [S]. 
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4.2. SGS Stress Terms in Curvilinear Coordinates 

In order to introduce the SGS stresses into the NS-equation, the covariant 
derivative of R” is required: 

R”,= %K,,g” - 2v,e”,,- 2v,,,eg. (30) 

It is noted that the overbars denoting averaging operations are used snly in 
Section 4.1 and they are dropped in this and succeeding sections for simplicity. The 
first term can be treated together with the pressure in the NS-equation. The second 
term is deformed into a form similar to the viscous diffusion term of the 
NS-equation as follows: 

-2v,eggr = -vsgJmu’,,ri 

Therefore, the NS-equation with the SGS turbulence model in the general 
curvilinear coordinate system is from Eqs. (19), (29), and (31): 

(32a) 

a’ = -g’-’ -J2- (P + $g,,dq’+ g,x3 + SK) 
K” 

g”&,,,qkd + gg&,,,Uk dMn 

^ 
- eyk Umqn) - u’g - 112 -E ag, (g’%‘) 

- (v + v,) &Vk $ ( gklm’) + 2 i$ e’. CQb) 

The deformation tensor e, and e” in Eqs. (26) and (31) are calculated using the 
following relations: 

2erJ = u,;, + uj.l 

ad auk I alhul =gik@+g,k ai"' at1 ' 
rl jk e”=g g elk. 

4.3. Nondimensionalization 

When variables are made dimensionless as 

r’ = r/L, ur =u, P’ = P/U’, K’= K/U=, 1’ = tI(LpJ), (35) 
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where L is the ship length and U is the advance speed, and the primes are dropped 
for simplicity, the first, third, and last terms of Eq. (32b) become, respectively, 

-go -& (P + +g,,ukqi + F-*x3 + SK), 

2 aR,’ &J. 
ap (36~) 

Here, F is the Froude number and R, and R, are the Reynolds numbers defined as 

F= U/&J, (374 
R, = UL/(v + v,), W’b) 

R, = UL/v,. (37c) 

5. COMPUTATIONAL PROCEDURE 

5.1. Solution Algorithm 

By forward differencing in time the NS-equation (32) with Eq. (36) becomes 
w;,“n + 1) 

-l/2 g U 
g At 

= -grad 4 + b. (38) 

Here, 4 is the sum of the scalar quantity shown in the parentheses of Eq. (36a), b is 
the sum of all other terms including u/At. The superscript (n + 1) denotes the time 
level and II is dropped for simplicity. Taking the divergence of Eq. (38) and letting 
the divergence at the (n + 1)th time step be zero by Eq. (8), we have a Poisson 
equation for the Bernoulli scalar 4 as 

(39) 

Therefore, we have the computational procedure as follows. First a solenoidal 
velocity field is given as an initial condition: 

d=O. (40) 

The fluid motion is initiated by giving an acceleration of a flow to the term b of 
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Eq. (38). In this new velocity field the Bernoulli scalar field is iteratively calculated 
through the following equation which is derived from Eq. (39): 

Plere, a is a relaxation factor and the superscript m denotes the iterative leve 
velocity vector is renewed by the new scalar field through Eq. (32) an 
difference of the base vector g(i) due to the time-marching is considered by once 
transforming the velocity components onto the Cartesian coordinates using 
Eq. (21). 

The free-surface configuration is deformed by the movement of the grid points 
following the free-surface conditions described in the subsequent section. The new 
grid system is generated by solving Eq. (2) under the updated boundary conditions” 
Then the new Bernoulli quantity field is obtained by Eq. (41) and the cycle is 
repeated until the acceleration of the flow ceases and a sufficiently steady slate 
is reached. 

5.2. Finite-Difference Approximation 

The difference form of the N&equation in rotational form retains its property of 
conserving the kinetic energy when a symmetrical differencing scheme is used. 
Among a number of differencing schemes the second-order centered differe~~i~g 
and the fourth-order compact differencing are well known as symmetrical schemes. 
In this study the second-order centered differencing scheme is used for space dif- 
ferencing, since the fourth-order compact scheme requires remarkable computation 
time. The space differencing for the Poisson equations (2) and (39) for the solution 
of a grid system and for the solution of a pressure field, respectively, also uses t 
second-order centered differencing. 

6. BOUNDARY CONDITIONS 

6.1. Free-Surfkze Condition 

The free-surface boundary conditions appropriate for the NS-equation are one 
kinematic and two dynamic conditions. The latter means that the normal an 
tangential stresses vanish. These stress conditions must be carefully implemented in 
a strict sense. However, the viscous stresses are ignored in this study, since it is 
safely accepted that the role of viscous stresses is almost negligible and the viscous 
layer is ultimately thin on the free-surface in the present problem of a high Froude 
number Bow. Therefore, the normal stress condition becomes the simplest one that 
gives the atmospheric pressure on the free-surface and the tangential stress con- 
dition disappears. 

As shown in Table II, another boundary condition of zero-nor 
the velocity vectors is imposed at the free-surface. This condition is 

581/72/2-9 
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TABLE II 

Boundary Conditions for the Solution Procedure 

Boundaries Bernoulli scalar 4 Velocity vector u 

Free-surface 
Bottom 
Inflow 
Outflow 
Side 
Ship surface 
Centerplane 

P = Pair z 0 
P-+-F-2X' 
P+F-'X3 

~crkd=~crL4,-,) 
~cr~,,,=~c~t,,-,~ 
4cr:, = d(E) - -w53 

4(G) = d(G) 

N&,) = u(&4x--I) 
utt:, = 443 
Uniform flow 

4&4,)=~(5L*X-,) 
U(G4AX )=u(e4,,~,) 

4t:, =o 
lu(t:)l = Mm 

Note. Subscripts for 5 denote number of grid point. 

above tangential stress condition, assuming that the curvature of the surface is 
small and the tangential gradient of the normal velocity is small. This condition is 
very appropriate when the vertical spacing of the grid system is so fine that the 
viscous layer on the free-surface is resolved. However, it is almost impossible to 
resolve it in this study due to limited computer storage. Therefore the zero-normal- 
gradient condition for the velocity vectors is employed simply from the stability 
point of view for the time being, which is necessary partly by the use of the 
backward differencing of velocities at the free-surface. This nominal tangential stress 
condition may deteriorate the accuracy unless tine spacing is used in the proximity 
of the free-surface. 

The kinematic condition is implemented by the movement of the uppermost cur- 
vilinear surface, as described in detail below. 

According to experimental investigation [l] the slope of the free-surface caused 
by the advancing motion of a ship sometimes reaches 60” to the horizontal surface. 
However, it is usually within 30” and it has been demonstrated already that the 
representation of the free-surface location as a single-valued function of (xl, x2) 
gives satisfactory agreement with measurement [7]. For further advanced study, 
the resolution of breaking free-surface motion seems to be of significant importance. 
The authors have previously worked on the numerical simulation of breaking waves 
in two dimensions [17]. However, we still have a lot of difficulty achieving 
simulations of three-dimensional breaking motion. 

The kinematic condition implies that fluid particles on the free-surface remain on 
it. Assume that the wave height in the physical region is 

x3 = f(X’, x2, t), 

then the kinematic condition becomes 

(42) 

(43) 
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The velocity terms dx’jdt in Eq. (43) are defined in the Cartesian coordinates as 

In the transformed region the plane of constant l3 represents the free-surface and in 
the physical region the uppermost coordinate of x3 which is a function of (cl, t’, 13) 
represents the free-surface. Therefore, the kinematic free-surface condition becomes 

ax3 
t=U3*- i 

a2ap a2ap 
yqTax'+agzax' d" I 

i 
a.2 agl ax3 ap 

\ 
2* - -----7+--y ap ax- ap ax , u . 

When the velocity held is determined at every time step, the grid points that 
represent the free-surface are moved by Eq. (45) in an Eulerian manner. This gives 
the free-surface configuration and the grid system is renewed by solving Eq. (2) 
under this new Dirichlet condition for x3. 

The dynamic condition is satisfied by simply giving the atmospheric pressure to P 
of the scalar quantity $ in Eq. (39) on the free-surface. 

6.2. Filtering of the Free-Surface 

The free-surface configuration sometimes shows fluctuations of which a 
wavelength is equal to two grid spacings. In order to remove this unfavorable fluc- 
tuation, filtering is applied to the free-surface coordinates, updated by Eq. (45). 

Assume that a local wave profile in the directions of t1 or t2 is expressed by a 
quadratic equation and it contains a triangular-shaped fluctuation, then the wave 
height h is written as [14] 

We use live points for the filtering equation, 

To eliminate the terms with the coefficients of b, and b, from the filtered wave 
height h, the coefficients in Eq. (47) must be 

5-2 = Wj,l dxi-,)/(2(dx,-,-dx,+,)dx,-,), 

C ~~1=d;r,+,l(2(dx,+,--x,-,)), 

CJ =(Ax,+2Ax,~,-Ax,,,Ax,~,)/(2Axj+,Axj-,), 

c 1+1=Ax,-,l{2(Xj-l-AX,+l)), 

C /+2 =Ax,+, Axj-~/CW~,t2 -A+J Ax,+zj> 
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where 

(49) 

It is demonstrated in previous works [6, 141 that the presumable dissipative 
property of this filtering does not seriously influence the solution. This filtering is 
made in the directions of both [’ and r*. The grid system deformed by the 
movement of the free-surface in the manner described above is shown in Fig. 3. 

6.3. Other Boundary Conditions 

Special treatment of the free-surface location must be introduced at the intersec- 
tion of the free-surface with the hull so that the singularity is removed. First, the 
wave height is extrapolated from the two outer values using Eq. (47) with a 
symmetry condition. Let us assume xi is the coordinate of the intersection and xj+ i 
and xjt2 are outer points where the wave height is normally computed, and set the 
wave height at the inner points xi- I and xje2 equal to the outer values 
symmetrically. Then Eq. (47) is modified as 

It is noted that an alternative extrapolation method for giving the same value, with 
X ,+ 1 at the intersection xj, leads to divergence of the solution. Second, the (xi, x2) 
coordinates of this point are moved to coincide with the exact hull surface. These 
approximations at the intersection do not seem to be a source of serious error, since 
a very fine spacing is used near both the free-surface and the hull surface and the 
time increment is very small. 

Boundary conditions for the Bernoulli quantity (or pressure) and the velocities 
are listed in Table II. Hydrostatic pressure is assumed on the inflow and bottom 
boundaries where the influence of the fluid motion due to an advancing ship is 
nearly negligible. The pressure on the ship surface is normally computed with the 
inner pressure extrapolated by the relation of the NS-equation shown in Table II. 
The NS-equation gives three conditions for d[ 181 and one in the t*-direction, 

FIG. 3. Grid system deformed by waves. 
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which is nearly normal to the ship surface, is taken here. This treatment of the 
pressure condition on a body surface was tested by the authors in the previous 
work [ 161. At a number of boundaries a very simple boundary condition of no- 
gradient for variables in the direction approximately normal to the boundaries is 
imposed. The Bernoulli scalar quantities are equally set at the outflow an e 
boundaries, and the velocity vectors are extrapolated in the same manner at the 
free-surface, bottom, outflow, and side boundaries as shown in Table II. The error 
due to these approximations is reduced on the ship surface and free-surface 
allocating tine spacings of the grid system in the proximity of the two surfaces. 
Symmetry conditions are imposed on the center plane. 

The turbulent kinetic energy K is set at zero on the body boundary and it is 
calculated by the normal procedure on the free-surface. The turbulent motion on 
the free-surface is important when wave breaking occurs. Wowever, this con- 
sideration is postponed to future study. No other assumption is introduced to 
implement boundary conditions for the turbulent flow, although it can play an 
important role in particular problems. 

7. COMPUTED RESULTS 

1.1. Condition of Computation 

A ship model with a simple mathematical configuration called Wigley’s bull is 
chosen for the computation. The length of the model is 2.5 m and the offsets of the 
hull are expressed by the following equation: 

Y = (L/20){ 1 - (2X/L)‘} { 1 - (Z/d)‘). (51) 

IIere, (X, Y, 2) are coordinates of the hull surface in the (x’, x2, x3) coor 
and d is the draft of the model, which means that the depth below the u~dist~~be~ 
free-surface is 0.156 m in the present case. 

All the coordinates and variables are made dimensionless by Eq. (35) an 
reference length L (the ship length) is assumed to be unity in the subsequent 
description. The length, width, and depth of the initial computational domain are 
2.00, 0.16, and 0.12 for the cases of a double-model-flow without free-surface and 
2.00, 0.40, and 0.12 for the principal cases of a flow with free-surface. In each 
region 170 x 20 x 30 and 170 x 30 x 20 grid points are allocated in the cl, t2, and 
directions, respectively. On one side of the hull surface 101 x 19 and 101 x 13 gr 
points are located as seen in Fig. 2 for the case of a double-model-flow and in 
for the case of a flow with free-surface. The grid points are numbered by (1, UT, K) 
for te (cl, t’, <‘) directions, respectively; for instance, the plane at I= 30 means an 
approximately vertical plane at the forward end of the hull (called FP) and one at 
I= 130 the aft end (called AP). The smallest grid spacings are approxima~~ly 
0.0035, 0.0009, and 0.0031 in the x1, x2, and x3 directions, respectively. The attrac- 
tion and decay factors used to generate the grid system shown in Fig. 3 are listed in 
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TABLE III 

Attraction and Decay Factors for Grid Generation 

R=103 R=104 R=lOs 

A B A B A B 

l’=30 (FP) 30,000 0.4 30,000 0.4 30,000 0.4 
5’ = 130 (AP) 30,000 0.4 30,000 0.4 30,000 0.4 
5’ = 2 (hull-surface) 60,000 0.4 150,000 0.4 180,000 0.4 
t3 = 8 (keel) 40,000 0.5 40,000 0.5 40,000 0.5 
c3 = 20 (free-surface) 40,000 0.5 40,000 0.5 40,000 0.5 

Table III. For the grid system of the double-model-flow the same values are used 
except for the free-surface. 

The computations are performed at the Reynolds numbers (R) of 103, 104, and 
lo5 and at the Froude numbers (F) of 0.170, 0.200, and 0.289. Both parameters are 
based on the length of a ship L and the uniform speed of advance U. The SGS tur- 
bulence model is not used in the computations at R = 103. The time increment is 
3.33 x 10e4 dimensionless time, which is determined by the stability consideration 
with respect to Courant and diffusion numbers, since an explicit scheme is used. 
The flow velocity is linearly accelerated for 1000 time steps (0.333 dimensionless 
time) and the computation is continued to the 2000th or 3000th time step when an 
almost steady state is reached. 

The number of iterations necessary to generate the new grid system by solving 
Eq. (3) is usually less than three, and that for solving the Bernoulli quantity field by 
Eq. (41) is about ten. 

- UFLOW 
___------- --------- ---------_--_________ _ _ 
__---- _-__------- 

+ UFLOW 

FIG. 4. Velocity vector fields on a xl-x* coordinate surface computed by the double-model-flow 
assumption at R= 103, lo“, and 105. 
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FIG. 5. Velocity fields on a x2-x3 coordinate surface at I= 60 computed by the double-model-flow 
assumption at R = 103, 104, and 10’. 
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7.2. Effect of Reynolds Number 

Velocity vector fields on typical coordinate surfaces are compared in Figs. 4 and 
5. One velocity vector is drawn for each double spacing in the cl-direction in Fig. 4 
and all the vectors are drawn in Fig. 5. The thickness of the boundary layer is 
reduced with the increasing Reynolds number. It is also noted that the vortex 
caused by flow separation is obscure at R = 103, while, on the contrary, the velocity 
vectors show fluctuation in the vertical region at R = 105. The former is attributable 
to the excessive viscosity and the latter to insufficient resolution. The magnitude of 
the term derived from the turbulence model is of the same order as the term of the 
molecular viscosity in the vicinity of the body surface at R = 104. The turbulence 
model plays a more important role at R = lo5 and it will extend the availability of 
the present method to the higher Reynolds number provided sufficiently fine grid 
spacing can be used. 

The grid spacing of the present method becomes relatively coarser at a little dis- 
tance from the ship surface, where an attached vortex causes a complicated flow 
field. Although this problem will be resolved by using a larger number of grids, it is 
restricted by the storage limitation of the computer presently available. Therefore, 
subsequent computations are carried out at R = 104. 

FIG. 6. Time sequence of waves for F= 0.289 and R = lo4 at T= 0.167, 0.333, 0.500, and 0.667; the 
ship model is accelerated for the period of 0.333; the contour interval is 0.05 U2/2g,; and positive values 
are drawn m bold lines. 
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1.3. Wave Formation and Pressure Distribution on a Ships Surface 

The time sequential development of the waves about a ship is shown in Fig. 6 for 
the case of F= 0.289, which shows that an almost steady state is attained at t 
time of 0.667 after 2000 steps of time-marching. It is noted that the wave height is 
made dimensionless with respect to the head of a uniform stream U2/2g,. 

The variation of bow and stern waves due to the difference of the Froude number 
is shown in Fig. 7. It indicates that the wavelength is increased and the angle of the 
wave crest line to the centerline is reduced by the increasing Froude n 
(involving the decrease of the maximum dimensionless wave height), the la 
which is one of the typical characteristics of the free-surface shock wave [l 
maximum wave height at F = 0.289 is 0.28 x U’j2g,, while the measured contour 
map shows the maximum wave height of 0.35 x U2/2g,. [73. At present the degree kpf 
accuracy is not superior to the previous TUMMAC-IV method tha 
inflexible rectangular cell system. This is due mostly to the coarser grid 
the uppermost coordinate surface and in its neighborhood. 

Figure 8 compares the pressure distribution on the ship surface for 
IO4 and also with the measured pressure distribution, in which the 
pressure is excluded. The values on the contour lines correspond to the pressure 
coefficient. By increasing the Reynolds number up to 104, the agreement in 
phase of the bow wave seems to be improved, and the presence of positive press 
at the aft end is particularly interesting, since it seems to be influenced by the 
interaction of waves with the viscous flow. However, the maximum pressure at t 
bow for R = PO3 apparently shows better agreement with the measured v 
for R = fQ4. This is attributable to the higher wave height at the lower 
number, since the maximum wave height is 40% of the head of the unifo 
at R = lo3 while it is 28 % at lo4 and 35 % in the experiment at F= 0.289. 
not imply a better degree of accuracy for the lower Reynolds number. By improving 
the accuracy, the wave height will be raised by a higher Reynolds number an 
sequently the pressure contour will show better agreement with the larger 
magnitude. 

‘7.4. Flow Field 

Velocity vector fields on six vertical coordinate surfaces, which are not plane but 
slightly curvilinear, are shown in Fig. 9 for the case of a double-model-flow an 
two cases with waves at F=0.170 and 0.289. The overall flow field and the dif- 
ference between the three figures due to the motion of free-surface waves are dearly 
observed. The generation of large-scale vortices by three-dimensional separation is 
well simulated. The dominant vortex on the fore part has clockwise rotation and 
that on the after part, anticlockwise rotation. These vortices having axes along the 
xl-direction are called bilge vortices in the field of naval architecture. However, in 
the present case of a Wigley’s hull that does not have a bilge (a round corner at t 
bottom side of a hull with square-shaped cross sections) these separated vortices are 
generated by the downward and upward flows around the fore and after parts, 



a 

F=O.289 

b 

FIG. 7(a). Contour maps of bow waves at F= 0.170, 0.200, and 0.289 and R = 10“; the contour 
interval is 0.02 Uz/2gg,; and positive values are drawn in bold lines. (b) Contour maps of stern waves 
with the same conditions as Fig. 7(a); the contour interval is 0.01. 



m I 

VISCOUS FLOW WITH FREE-SURFACE WAVE 



\ 



VISCOUS FLOW WITH FREE-SURFACE WAVE 485 

respectively, which are proper consequences of the longitudinal variation of the 
displacement of a ship. 

Contour maps of a velocity component u3 and vorticity component o1 about a 
longitudinal axis and pressure coefficient excluding the hydrostatic pressure are 
shown in Figs. 10 to 12, where comparison is made between the double-model- 
case and the highest Froude number case. Since three longitudinal locations I= 
60, and 140 where wave motions are prominent are chosen, the effect of w 
motion on the flow field is quite obvious. The highest value of downward velocity 
in Fig. 10(a) is not varied by the wave motion, but the geometry of the contour is 
obviously deformed by the presence of upward and downward velocities on the 
free-surface. The wake field behind a ship shown in Fig. 10(c) also shows a 
remarkable difference due to the wave motion Similarly, the vorticity field is quite 
deformed by the wave motion. Anticlockwise rotation with large magnitude is 
generated near the free-surface as shown in Fig. 1 l(a). Then, the clockwise vorticit 
region is pulled upward by the wave motion at I= 60 in Fig. 1 l(b), and the wi 
of the voriticity region with anticlockwise rotation is narrowed in the wake 
shown in Fig. 11 (c). The influence of the wave motion is most remarkable in 
pressure field shown in Fig. 12. This seems to be quite reasonable, since this 
ference of pressure leads to wave resistance which is not related to a ship in a 
double-model-flow. This pressure field caused by the wave motion is supposed to 
give influences on the viscous flow including the three-dimensional separation noted 
in Fig. 11. 

The longitudinal variation of the vorticity (WI) contour map is shown in Fig. 13 
for the case of the highest Froude number. This figure shows the evolution of vor- 
tices with longitudinal axes which are mostly caused by three-dimensional 
separation. Excluding the vortex with anticlockwise rotation near the fore en 
closely beneath the free-surface, the most dominant vortices are one with the 
clockwise rotation about the fore part of the hull a.nd one with anticlockwise 
rotation about the after part, which has been widely known since the work by 
Tagori [15]. It seems that the present simulation elucidates that a vertical layer 
with anticlockwise rotation already starts to develop on the ship surface of the fore 
part. This anticlockwise vortex motion on the fore part seems to be generated by 
the influence of the attached vortex with clockwise rotation which causes an 
upward flow on the ship surface. In a sense, a kind of pairing motion of an attached 
vortex with another one having opposite sign is present along the ship’s length. T 
pairing motion is similar to the phenomenon observed in the vortex shedding of a 
circular cylinder placed in an oscillatory flow at a low Keulegan-Carpenter ~~~b~~ 
[16-J. The shed vortex in this oscillatory flow remains in the proximity of the 
der, again attaches to the cylinder surface and gives significant effect on th 
separation to the opposite direction in the next half cycle. The downwar 
upward flows along the fore and after parts of a ship surface seem to play the role 
of the oscillatory flow. This figure indicates the need for the present metho 
understand this complicated pairing motion of vortices as well as the i~tera~ti~~s 
with the waves. 
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FIG. 10(a). Contour map of u3 at 1~40, left; double-model-flow, right; F=0.289, the contour 
interval is 0.005, and the upward velocity is drawn in bold lines. (b) At Z= 60. (c) At I= 140. 
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FIG. 11(a). Contour map of IIJJ‘ at 1=40, left; double-model-flow, right; F =0.289, the contour 
interval is 2. and the antlclockwise vorticity is drawn in bold lines. (b) At I= 60. (c) At I= 140. 
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FIG. 12(a). Contour map of P at Z=40, left; double-model-flow, right; F= 0.289, the contour 
interval is 0.005, and the positive pressure is drawn in bold lines. (b) At Z= 60. (c) At Z= 140. 
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8. CONCLUDING REMARKS 

The present method seems to have succeeded in simulating large-scale vertical 
flows, wave motions, and their interactions, although the Reynolds number is 
limited to 104. The theoretical tools so far developed have found difficulty in the 
detailed explanation of the complicated large-scale vertical flow about an advanc- 
ing ship. The present method and improved versions will cultivate a new research 
field of ship hydrodynamics. The principal concept and algorithm are similar to the 
so-called large-eddy simulation in many respects. By raising the degree of resolution 
with larger computer storage, together with improved techniques, more detailed 
viscous fluid motion interacting with wave motion will be simulated at higher 
Reynolds numbers, at which the SGS turbulence model will play a more important 
role in the future. 

The required degree of accuracy depends on the purpose of the simulation. For 
scientific purposes the degree of accuracy for the resolution of delicate physical 
phenomena is of significant importance, and for engineering purposes the accuracy 
in the estimated forces, which are consequences of fluid motion, is of practical 
importance. For both purposes qualitative resemblance of the flow field between 
experiments and computations is of limited importance. The efforts must be con- 
tinuously focused on the achievement on an adequate degree of accuracy. In the 
problem of resistance to a moving body, in particular, the estimation is often very 
difficult, since it is derived by subtracting a force on the after part from that on the 
fore part. Besides the complicated phenomena of flow separation, wave generation 
and their interactions play certain roles. It is hoped that the improved version of 
the present method with better properties of accuracy, stability, and economy will 
become a useful tool for this purpose in the future. 

The computer code called WISDAM for wave and viscous flows was recently 
developed at the Experimental Tank Laboratory of the University of Tokyo. The 
first version WISDAM-I was applied to viscous flows about a circular cylinder in 
steady and oscillatory motions [16], and the second version WISDAM-II, to a 
flow about a ship is described in this paper. These computer codes are composed 
for a supercomputer, namely for a vector processor, HITAC S-810/20 of the Com- 
puter Center of the University of Tokyo, and almost 100% of the computation is 
performed by the vector processor. However, since the degree of optimization in the 
coding for the vector processor was not satisfactory in the WISDAM-I, it is 
remarkably improved in the WISDAM-II. The CPU time is reduced to about one 
third. For the computation of 3000 time steps at R = lo4 and F= 0.289 the CPU 
time was about 40 min by the above supercomputer. 
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